
Mentally Friendly Follow

A Sydney based agency of super passionate strategists, designers and developers.
Oct 4, 2016 · 8 min read

Creating a Web Component with Polymer
by Liam Fiddler — Senior Full-Stack Developer

This is the �rst in a three part guide which will demonstrate an

approach for writing, documenting, and testing a Web Component with

Polymer.

Part 1 will explain what a Web Component is and build a

component that shows/hides list items based on user input.

Part 2 will extend the component by adding support for variable

list item content and case-insensitive �ltering. It will also provide

an introduction to component documentation.

Part 3 will cover the writing and execution of tests for the

component using the Web Component Tester library.

•

•

•

. . .

What is a Web Component?

Web Components are a collection of standardised features currently

being added by the W3C to the HTML and DOM speci�cations. They

allow you to encapsulate HTML, CSS, and Javascript into reusable

widgets or components in web documents and web applications. Part of

https://medium.com/@MentallyFriendly?source=post_header_lockup
https://medium.com/@MentallyFriendly?source=post_header_lockup

this encapsulation is handled by the Shadow DOM that scopes your

component’s style and DOM.

Web Components have native support in over 55% of web browsers

globally at the time of writing, with greater support being added in

every new release. For the remaining browsers we’ll be using Polymer

as a kind of ‘poly�ll’.

Assumed Knowledge & Prerequisites

A working understanding of HTML, CSS, and Javascript will be

required to follow this guide.

Additionally, this guide assumes you have the Polymer CLI installed on

your system. Polymer CLI is a command-line interface for Polymer

projects. It includes a build pipeline, a boilerplate generator for

creating elements and apps, a linter, a development server, and a test

runner.

Finally, although it’s not a requirement, Chrome was the �rst browser

to ship with support for all of the new Web Component standards so it’s

the recommended browser for this guide.

Our Goal

For this guide we’ll be building a component that allows a user to �lter

list items based on a search string.

It will look something like this:

. . .

http://www.polymer-project.org/
https://www.polymer-project.org/1.0/docs/tools/polymer-cli

Getting Started
We’re going to call our new component my-list�lter (the custom

elements speci�cation requires the component name contain a dash).

Open your preferred commandline shell and paste the following:

mkdir my-listfilter
cd my-listfilter

This will create a new directory for the project and change to that

directory. Next, we want to initialise the project. We’ll use the Polymer

CLI to set it up:

polymer init

You’ll be asked a series of questions about the project you’re setting up.

Select element, name the project my-list�lter and enter a description

for the project (something like ‘A �lterable list component’). Polymer

CLI will then generate a number of �les and directories for your

element and install the required dependencies.

The Component Skeleton

Open my-list�lter/my-list�lter.html in your preferred editor. It should

look something like this:

https://www.w3.org/TR/2016/WD-custom-elements-20160226/#concepts

First we see a link tag, this is importing the Polymer dependencies into

our component.

Next is a HTML comment containing the name of our component and

the description of the component we provided to Polymer CLI. This is

used to generate the documentation for the component.

The comment ends on a line that starts with @demo, this line speci�es

that the component comes with a demo page that can be found at

demo/index.html (this will come into play in Part 2 of this article

series).

Further down the �le we �nd the DOM-MODULE tag. The DOM-

MODULE is broken into two sections; a TEMPLATE which houses the

component styles & markup, and a SCRIPT which contains the logic &

functionality.

Inside the TEMPLATE tag you will see [[prop1]]. This is known as a

one-way binding. When the component is put on a page this text will be

replaced with the value of a variable called “prop1”.

The “prop1” variable and it’s value are set in the SCRIPT section within

the properties object. By default it is set to the string “my-list�lter”.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

<link rel="import" href="../polymer/polymer.html">

<!--

`my-listfilter`

A filterable list component

@demo demo/index.html

-->

<dom-module id="my-listfilter">

 <template>

 <style>

 :host {

 display: block;

 }

 </style>

 <h2>Hello [[prop1]]</h2>

 </template>

 <script>

 Polymer({

is: 'my-listfilter',

Viewing the Component in the Browser

At this stage you should be able to view the component in your web

browser.

Back in your commandline shell type the following:

polymer serve

A tool called “polyserve” will start and a couple of URLs will be

displayed. Open the “reusable components” URL in your web browser,

it will be something like http://localhost:8080/components/my-

list�lter/

This is the documentation that Polymer has generated for your

component. Clicking the “demo” link in the top corner should take you

to another page that looks like this:

On this page we can test the component and make sure it’s working

correctly.

Adding The Filter Input

One of the key pieces in our list�lter component will be the text input

�eld used for �ltering. To accomplish this we’ll be using a standard

HTML input tag.

Jump back to your code editor and insert the following on a new line

after the closing STYLE tag and before the opening H2 tag:

<input value="{{prop1::input}}" />

This creates a text input on the page.

You’ll note we’ve also added a value attribute to the input. The content

of the attribute is what makes the tag special. By specifying prop1 in

curly braces we’ve told Polymer to create a two-way binding between

the “prop1” variable and the input’s value property. Additionally, by

specifying ::input after the variable name we’ve told Polymer to

automatically update the variable’s value whenever the value property

changes.

Your my-list�lter.html �le should now look like this.

Save the �le and refresh the demo page in your web browser. Now

when you type into the input you should see the content of the H2 tag

change!

https://gist.github.com/liamfiddler/531ebe07f4d0a7a7dfa5d0bf18ca331f

Adding the List Markup and Styles

The other key piece in our list�lter component will be the list itself. For

this guide we’ll be using a UL tag to represent a list.

Paste the following in your code editor after the closing H2 tag:

<ul id="list">
 Hypertext Markup Language
 Cascading Style Sheets
 Javascript
 Web Components
 Polymer
 Web Browser
 Mentally Friendly

Note that we’ve added an id attribute to the UL tag. This will allow us to

easily target the element when we start writing the �ltering

functionality.

Then, between the style tags in the template we’ll add some CSS to hide

list items:

.hidden {
 display: none;
}

Your my-list�lter.html �le should now look like this.

If you refresh the demo page in your browser you will now see the list

items below the INPUT tag, but the list is not being �ltered yet. On to

the next step!

Marking List Items as Hidden

At this stage we’ve produced the markup for an input (whose value is

attached to a variable) and a list. The next step will be to write a

function that can show or hide the list items if they contain the input

value.

Add the following to the script section, before the �nal });

https://gist.github.com/liamfiddler/e744d92b2221f0968d9dfd4072a59216

filterList: function() {
 var items = this.$.list.children;

 for (var i = 0; i < items.length; i++) {
 var item = Polymer.dom(items[i]);

 if (item.textContent.includes(this.prop1)) {
 item.classList.remove('hidden');
 } else {
 item.classList.add('hidden');
 }
 }
}

There’s a lot going on in the above snippet so let’s go through it step-by-

step.

The �rst line de�nes a name for our function, “�lterList”.

The second line uses a neat trick in Polymer to retrieve the list items

and store them in an array. When you create a node in the template

section with an id attribute it will be automatically added to the this.$

hash with the id as it’s key. This means we can access the list we created

earlier as this.$.list without having to query the DOM manually!

Over the next two lines we loop through the list items and store them in

the variable item. Here we use the Polymer.dom method to get a

reference to the node in the Shadow DOM, ensuring any changes we

make to the item are properly maintained when the component is

rendered.

We then check to see if the text content of the item includes the �lter

text. If the �lter text is found we remove the “hidden” class from the

node, otherwise the “hidden” class is added.

Your my-list�lter.html �le should now look like this.

Running a Function when the Input Changes

We’ve got a function that can show/hide list items based on the search

text, but how do we get it to run when the user types new text in the

input �eld?

In the script section there is a block of code that looks like this:

https://gist.github.com/liamfiddler/35b59e880f2e3973ee28482e761ff9b7

prop1: {
 type: String,
 value: 'my-listfilter',
},

This de�nes the prop1 variable we’re using. The type of the variable is

set to String and the default value is my-list�lter.

Let’s change the value to an empty string so the input �eld is cleared by

default, and add an observer property:

prop1: {
 type: String,
 value: '',
 observer: 'filterList'
},

Observers are methods invoked when observable changes occur to the

element’s data, this includes when the data is �rst de�ned and any

changes that occur thereafter (even if it becomes unde�ned again). In

this case we’ve told Polymer to call the the function we created earlier

whenever the value is updated.

. . .

Review
If you’ve been following along your my-list�lter.html �le will now look

like this:

Save the �le and refresh the demo page in your web browser. If

everything’s gone to plan you should be able to type into the text �eld

and see the list items disappear if they don’t match!

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

<link rel="import" href="../polymer/polymer.html">

<!--

`my-listfilter`

A filterable list component

@demo demo/index.html

-->

<dom-module id="my-listfilter">

 <template>

 <style>

 :host {

 display: block;

 }

 .hidden {

 display: none;

 }

 </style>

 <input value="{{prop1::input}}" />

 <h2>Hello [[prop1]]</h2>

 <ul id="list">

 Hypertext Markup Language

 Cascading Style Sheets

 Javascript

 Web Components

 Polymer

 Web Browser

 Mentally Friendly

 </template>

 <script>

 Polymer({

 is: 'my-listfilter',

 properties: {

 prop1: {

 type: String,

l ''

Next Steps
In the next article we’ll extend the component by adding support for

variable list item content and case-insensitive �ltering. We’ll also look

at methods for improving the readability of the code, as well as

documenting the component.

